已知:(
)是方程
的两根,且
,
.
(1)求
的值;(2)设
,求证:
;(3)求证:对
有
w。.w..
已知是关于
的二次方程
的两个实数根,求:(1)
的值;
(2)的值.
已知命题:直线
与抛物线
有两个交点;命题
:关于
的方程
有实根.若
为真命题,
为假命题,求实数
的取值范围.
如图,椭圆:
(
)和圆
,已知圆
将椭圆
的长轴三等分,且圆
的面积为
.椭圆
的下顶点为
,过坐标原点
且与坐标轴不重合的任意直线
与圆
相交于点
,直线
与椭圆
的另一个交点分别是点
.
(1)求椭圆的方程;
(2)(Ⅰ)设的斜率为
,直线
斜率为
,求
的值;
(Ⅱ)求△面积最大时直线
的方程.
如图,四棱锥的底面ABCD是平行四边形,
,
,
面
,设
为
中点,点
在线段
上且
.
(1)求证:平面
;
(2)设二面角的大小为
,若
,求
的长.
如图,在平面直角坐标系中,平行于
轴且过点
(3,2)的入射光线
被直线
反射.反射光线
交
轴于
点,圆
过点
且与
都相切.
(1)求所在直线的方程和圆
的方程;
(2)设分别是直线
和圆
上的动点,求
的最小值及此时点
的坐标.