【2015高考新课标2,理24】(本小题满分10分)选修4-5不等式选讲
设均为正数,且
,证明:
(Ⅰ)若,则
;
(Ⅱ)是
的充要条件.
已知数列满足:
,
.数列
的前
项和为
,
.
(Ⅰ)求数列,
的通项公式;
(Ⅱ)设,
.求数列
的前
项和
.
已知函数,
.
(Ⅰ)求函数的最小正周期与单调增区间;
(Ⅱ)求函数在
上的最大值与最小值.
(本小题满分16分)已知数列中,
,前
项和为
(Ⅰ)证明数列是等差数列,并求出数列
的通项公式;
(Ⅱ)设,数列
的前
项和为
,求使不等式
对一切
都成立的最大正整数
的值。
(本小题满分16分)如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求M在AB的延长线上,N在AD的延长线上,且对角线MN过C点。已知AB=3米,AD=2米。
(Ⅰ)设(单位:米),要使花坛AMPN的面积大小32平方米,求
的取值范围;(Ⅱ)若
(单位:米),则当AM,AN的长度分别是多少时,花坛AMPN的面积最大?并求出最大面积。
(本小题满分16分)如图,已知矩形ABCD中,AB=10,BC=6,沿矩形的对角线BD把折起,使A移到A1点,且A1在平面BCD上的射影O恰好在CD上。
(Ⅰ)求证:
(Ⅱ)求证:平面平面