游客
题文

已知偶函数满足:当时,
时,
(1) 求当时,的表达式;
(2) 试讨论:当实数满足什么条件时,函数有4个零点,
且这4个零点从小到大依次构成等差数列.

科目 数学   题型 解答题   难度 较易
知识点: 函数迭代
登录免费查看答案和解析
相关试题

(本小题满分10分,几何证明选讲)
如图,与圆相切于点的中点,过点引圆的割线,与圆相交于点,连结
求证:

(1)设均为正数,求证:
(2)设数列的各项均为正数,,两个数列同时满足下列三个条件:
是等比数列;②;③.
求数列的通项公式.

已知函数,其中为自然对数底数.
(1)当时,求函数在点处的切线方程;
(2)讨论函数的单调性,并写出相应的单调区间;
(3)已知,若函数对任意都成立,求的最大值.

某地拟模仿图甲建造一座大型体育馆,其设计方案侧面的外轮廓线如图乙所示:曲线是以点为圆心的圆的一部分,其中,单位:米);曲线是抛物线的一部分;,且恰好等于圆的半径. 假定拟建体育馆的高米.

(1)若要求米,米,求的值;
(2)若要求体育馆侧面的最大宽度不超过米,求的取值范围;
(3)若,求的最大值.
(参考公式:若,则

如图,A,B,C是椭圆M:上的三点,其中点A是椭圆的右顶点,BC过椭圆M的中心,且满足AC⊥BC,BC=2AC。

(1)求椭圆的离心率;
(2)若y轴被△ABC的外接圆所截得弦长为9,求椭圆方程。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号