(本小题满分12分)
设函数f(x)=ax+(a,b∈Z),曲线y=f(x)在点(2,f(2))处的切线方程为y=3。
(Ⅰ)求f(x)的解析式:
(Ⅱ)证明:函数y=f(x)的图像是一个中心对称图形,并求其对称中心;
(Ⅲ)证明:曲线y=f(x)上任一点的切线与直线x=1和直线y=x所围三角形的面积为定值,并求出此定值。
已知抛物线,点
,若斜率为
的弦过点
,且以
为弦中点.
(1)求抛物线方程;
(2)若是抛物线过点
的任一弦,点
是抛物线准线与
轴的交点,直线
分别与抛物线交于
两点,求证:直线
的斜率为定值,并求
的取值范围.
如图,在平面四边形中,
,
分别是边
上的点,且
.将
沿对角线
折起,使平面
平面
,并连结
.(如图2)
(Ⅰ)证明:平面
;
(Ⅱ)证明:;(Ⅲ)求直线
与平面
所成角的正弦值.
数列.
(1)
(2)在(1)的结论下,设
已知向量,设函数
。
(1)求函数 的最小正周期及
时的最大值;
(2)把函数的图象向左平移
个单位,所得到的图象对应的函数为奇函数,求
的最小值。
已知函数的定义域是
且
,
,当
时,
.
(1)求证:是奇函数;
(2)求在区间
)上的解析式;
(3)是否存在正整数,使得当x∈
时,不等式
有解?证明你的结论.