已知以
为首项的数列
满足:
(1)当
,
,
时,求数列
的通项公式;
(2)当
,
,
时,试用
表示数列
的前
项的和
;
(3)当
(
是正整数),
,
时,求证:数列
,
,
,
成等比数列当且仅当
.
已知函数,
(Ⅰ)求函数的最大值和最小正周期;
(Ⅱ)设的内角
的对边分别
且
,
,若
求
的值.
已知函数,且其导函数
的图像过原点.
(1)当时,求函数
的图像在
处的切线方程;
(2)若存在,使得
,求
的最大值;
设,其中
(Ⅰ)当时,求
的极值点;
(Ⅱ)若为R上的单调函数,求a的取值范围。
2012年春节前,有超过20万名广西、四川等省籍的外来务工人员选择驾乘摩托车沿321国道长途跋涉返乡过年.为防止摩托车驾驶人员因长途疲劳驾驶,手脚僵硬影响驾驶操作而引发交事故,肇庆市公安交警部门在321国道沿线设立了多个长途行驶摩托车驾乘人员休息站,让过往返乡过年的摩托车驾驶人员有一个停车休息的场所. 交警小李在某休息站连续5天对进站休息的驾驶人员每隔50辆摩托车,就进行省籍询问一次,询问结果如图4所示:
(1)问交警小李对进站休息的驾驶人员的省籍询问采用的是什么抽样方法?
(2)用分层抽样的方法对被询问了省籍的驾驶人员进行抽样,若广西籍的有5名,则四川籍的应抽取几名?
(3)在上述抽出的驾驶人员中任取2名,求至少有1名驾驶人员是广西籍的概率.
在三棱锥中,
和
是边长为
的等边三角形,
,
分别是
的中点.
(Ⅰ)求证:∥平面
;
(Ⅱ)求证:平面⊥平面
;
(Ⅲ)求三棱锥的体积.