已知以
为首项的数列
满足:
(1)当
,
,
时,求数列
的通项公式;
(2)当
,
,
时,试用
表示数列
的前
项的和
;
(3)当
(
是正整数),
,
时,求证:数列
,
,
,
成等比数列当且仅当
.
(本小题满分13分)设函数
(1)求函数的最小正周期及其在区间
上的值域;
(2)记△ABC内角A,B,C的对边分别为a,b,c,若,,且
,求角B的值.
(本小题满分13分)已知函数簇 .
(1)设曲线列的顶点的纵坐标构成数列
,求证:数列
为等差数列;
(2)设曲线列的顶点到
轴的距离构成数列
,
为数列
的前
项和,求S20.
如图,已知平面
,
于D,
。
(Ⅰ)令,
,试把
表示为
的函数,并求其最大值;
(Ⅱ)在直线PA上是否存在一点Q,使得?
将一个长、宽分别的长方形的四个角切去四个相同的正方形,然后折成一个无盖的长方体形的盒子,
(Ⅰ)设切去小正方形的边长为,用
表示这个长方体的外接球的半径
;
(Ⅱ)若这个长方体的外接球的体积存在最小值,求的取值范围.
(本小题满分10分)如图,四棱锥的底面是正方形,
,点
在棱
上.
(Ⅰ)求证:平面;
(Ⅱ)当且
为
的中点时,求
与平面
所成的角的大小.