游客
题文

已知数列 { a n } { b n } 满足: a 1 = λ , a n + 1 = 2 3 a n + n - 4 , b n = ( - 1 ) n ( a n - 3 n + 21 ) 其中 λ 为实数, n 为正整数。
(Ⅰ)对任意实数 λ ,证明数列 { a n } 不是等比数列;
(Ⅱ)试判断数列 { b n } 是否为等比数列,并证明你的结论;
(Ⅲ)设 0 < a < b S n 为数列 { b n } 的前 n 项和。是否存在实数 λ ,使得对任意正整数 n ,都有 a < S n < b ?若存在,求 λ 的取值范围;若不存在,说明理由。

科目 数学   题型 解答题   难度 中等
知识点: 等比数列
登录免费查看答案和解析
相关试题

选修4-4:坐标系与参数方程
已知点,参数,点Q在曲线C:
(1)求点P的轨迹方程和曲线C的直角坐标方程;
(2)求点P与点Q之间距离的最小值。

选修4-1:几何证明与选讲
如图,已知PA与圆O相切于点A,经过点O的割线PBC交圆O于点B.C的平分线分别交ABAC于点D.E.
(1)证明:.
(2)若AC=AP,求的值.

已知函数.
(1)当时,求的极值;
(2)求的单调区间;
(3)若对任意的,恒有成立,求实数的取值范围.

已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.
(1)求椭圆的方程;
(2) 若过点(2,0)的直线与椭圆相交于两点,设为椭圆上一点,且满足为坐标原点),当时,求实数取值范围

中华人民共和国《道路交通安全法》中将饮酒后违法驾驶机动车的行为分成两个档次:“酒后驾车”和“醉酒驾车”,其检测标准是驾驶人员血液中的酒精含量Q(简称血酒含量,单位是毫克/100毫升),当20≤Q≤80时,为酒后驾车;当Q>80时,为醉酒驾车.某市公安局交通管理部门于2011年2月的某天晚上8点至11点在市区设点进行一次拦查行动,共依法查出了60名饮酒后违法驾驶机动车者,如图为这60名驾驶员抽血检测后所得结果画出的频率分布直方图(其中Q≥140的人数计入120≤Q<140人数之内).
(1)求此次拦查中醉酒驾车的人数;
(2)从违法驾车的60人中按酒后驾车和醉酒驾车利用分层抽样抽取8人做样本进行研究,再从抽取的8人中任取3人,求3人中含有醉酒驾车人数的分布列和期望.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号