(本小题满分13分)
如图,圆与
轴的正半轴的交点为
,点
、
在圆
上,且点
位于第一象限,点
的坐标为
,
.
(Ⅰ)求圆的半径及
点的坐标;
(Ⅱ)若,求
的值.
(本小题满分12分)在数列中,
,并且对于任意n∈N*,都有
.
(1)证明数列为等差数列,并求
的通项公式;
(2)设数列的前n项和为
,求使得
的最小正整数
.
如图,在平面直角坐标系中,
是半圆
的直径,
是半圆
(除端点
)上的任意一点.在线段
的延长线上取点
,使
,试求动点
的轨迹方程
已知圆的方程为
,直线
过点
,且与圆
相切.
(1)求直线的方程;
(2)设圆与
轴交于
两点,
是圆
上异于
的任意一点,过点
且与
轴垂直的直线为
,直线
交直线
于点
,直线
交直线
于点
.求证:
的外接圆总过定点,并求出定点坐标.
(1)若不等式的解集为
,求实数
的值;
(2)在(1)的条件下,若存在实数使
成立,求实数m的取值范围。
在线段上取两点
,在
处折断而得三个线段,求“这三个线段能构成三角形”的概率。