如图,两个圆形转盘A,B,每个转盘阴影部分各占转盘面积的。某“幸运转盘积分活动”规定,当指针指到A,B转盘阴影部分时,分别赢得积分1000分和2000分。先转哪个转盘由参与者选择,若第一次赢得积分,可继续转为另一个转盘,此时活动结束,若第一次未赢得积分,则终止活动。
(1)记先转A转盘最终所得积分为随机量X,则X的取值分别是多少?
(2)如果你参加此活动,为了赢得更多的积分,你将选择先转哪个转盘?请说明理由。
设函数的定义域为全体R,当x<0时,
,且对任意的实数x,y∈R,有
成立,数列
满足
,且
(n∈N*)
(Ⅰ)求证:是R上的减函数;
(Ⅱ)求数列的通项公式;
(Ⅲ)若不等式对一切n∈N*均成立,求k的最大值.
如图,直角梯形ABCD,∠,AD∥BC,AB=2,AD=
,BC=
椭圆F以A、B为焦点且过点D,
(Ⅰ)建立适当的直角坐标系,求椭圆的方程;
(Ⅱ)若点E满足
,是否存在斜率
两点,且
,若存在,求K的取值范围;若不存在,说明理由。
在三棱锥中,△ABC是边长为4的正三角形,平面
,
,M、N分别为AB、SB的中点。
(1)证明:;
(2)求二面角N-CM-B的大小;
(3)求点B到平面CMN的距离。
关于实数的不等式
的解集依次为
与
,求使
的
的取值范围。
设为等差数列,
为数列
的前
项和,已知
,
为数列
的前
项和,求