(南京市2002年二模)某公司生产的A型商品通过租赁柜台进入某商场销售.第一年,商 场为吸引厂家,决定免收该年管理费,因此,该年A型商品定价为每件70元,销售量为 11.8万件.第二年,商场开始对该商品征收比率为p%的管理费(即每销售100元要征收p元),于是该商品的定价上升为每件元,预计年销售量将减少p万件.
(1)将第二年商场对商品征收的管理费y(万元)表示成p的函数,并指出这个函数的定义域;
(2)要使第二年商场在此项经营中收取的管理费不少于14万元,则商场对该商品征收管理费的比率p%的范围是多少?
(3)第二年,商场在所收费不少于14万元的前提下,要让厂家获得最大销售金额,则p 应为多少?
(本小题满分12分)
某校高三文科分为四个班.高三数学调研测试后,
随机地在各班抽取部分学生进行测试成绩统计,
各班被抽取的学生人数恰好成等差数列,人数最少的班被抽取了22人。
抽取出来的所有学生的测试成绩统计结果的频率分布条形图如图5所示,
其中120~130(包括120分但不包括130分)的频率为0.05,此 0
分数段的人数为5人
(1)问各班被抽取的学生人数各为多少人?
(2)在抽取的所有学生中,任取一名学生, 求分数不小(本小题满分12分)
已知函数的最大值为
,最小值为
,求此函数式
已知函数
(Ⅰ)求函数的单调区间;
(Ⅱ)求函数在区间[-1,2]上的最大值和最小值.
解不等式:
已知且
,函数
满足
,
,
(Ⅰ)求证:;
(Ⅱ)求证: ;
(Ⅲ)若不等式: 恒成立,求
的取值范围.