二次函数f(x)=ax2+x+1(a>0)的图象与x轴的两个不同的交点的横坐标分别为x1、x2。
(1)证明:(1+x1)(1+x2)=1;
(2)证明:x1<-1,x2<-1;
(3)若函数y=xf(x)在区间(-,-4)
上单调递增,试求a的取值范围。
已知函数的定义域为
,当
时,
,且对于任意的
,恒有
成立.
(1)求;
(2)证明:函数在
上单调递增;
(3)当时,
①解不等式;
②求函数在
上的值域.
据气象中心观察和预测:发生于M地的沙尘暴一直向正南方向移动,其移动速度v(km/h)与时间t(h)的函数图象如图所示,过线段OC上一点T(t,0)作横轴的垂线l,梯形OABC在直线l左侧部分的面积即为t(h)内沙尘暴所经过的路程s(km).
(1)当t=4时,求s的值;
(2)将s随t变化的规律用数学关系式表示出来;
(3)若N城位于M地正南方向,且距M地650 km,试判断这场沙尘暴是否会侵袭到N城,如果会,在沙尘暴发生后多长时间它将侵袭到N城?如果不会,请说明理由.
已知函数(
)
(1)若从集合
中任取一个元素,
从集合
中任取一个元素,
求方程恰有两个不相等实根的概率;
(2)若从区间
中任取一个数,
从区间
中任取一个数
求方程没有实根的概率.
设p:实数x满足x2-4ax+3a2<0(其中a≠0),q:实数x满足
(1)若a=1,且p∧q为真,求实数x的取值范围;
(2)若p是q的必要不充分条件,求实数a的取值范围.
某高校从参加今年自主招生考试的学生中随机抽取容量为50的学生成绩样本,得频率分布表如下:
组号 |
分组 |
频数 |
频率 |
第一组 |
![]() |
8 |
0.16 |
第二组 |
![]() |
① |
0.24 |
第三组 |
![]() |
15 |
② |
第四组 |
![]() |
10 |
0.20 |
第五组 |
![]() |
5 |
0.10 |
合计 |
50 |
1.00 |
(1)写出表中①②位置的数据;
(2)为了选拔出更优秀的学生,高校决定在第三、四、五组中用分层抽样法抽取6名学生进行第二轮考核,分别求第三、四、五各组参加考核人数;
(3)在(2)的前提下,高校决定在这6名学生中录取2名学生,求2人中至少有1名是第四组的概率.