如图,已知抛物线的焦点在抛物线
上,点
是抛物线
上的动点.
(Ⅰ)求抛物线的方程及其准线方程;
(Ⅱ)过点作抛物线
的两条切线,
、
分别为两个切点,设点
到直线
的距离为
,求
的最小值.
如图,在△中,
,
,点
在
上,
交
于
,
交
于
.沿
将△
翻折成△
,使平面
平面
;沿
将△
翻折成△
,使平面
平面
.
(Ⅰ)求证:平面
.
(Ⅱ)设,当
为何值时,二面角
的大小为
?
一个袋中装有大小相同的黑球和白球共9个,从中任取3个球,记随机变量为取出3球中白球的个数,已知
.
(Ⅰ)求袋中白球的个数;
(Ⅱ)求随机变量的分布列及其数学期望.
在△中,角
所对的边分别为
,满足
.
(Ⅰ)求角;
(Ⅱ)求的取值范围.
已知函数,当
时函数
取得一个极值,其中
.
(Ⅰ)求与
的关系式;
(Ⅱ)求的单调区间;
(Ⅲ)当时,函数
的图象上任意一点的切线的斜率恒大于
,求
的取值范围.