(本小题满分14分)如图,三棱柱ABC—A1B1C1中,AA1面ABC,BC
AC,BC=AC=2,D为AC的中点。[
(1)求证:AB1//面BDC1;
(2)若AA1=3,求二面角C1—BD—C的余弦值;
(3)若在线段AB1上存在点P,使得CP面BDC1,试求AA1的长及点P的位置。
为了解某班关注NBA(美国职业篮球)是否与性别有关,对某班48人进行了问卷调查得到如下的列联表:
关注NBA |
不关注NBA |
合计 |
|
男生 |
6 |
||
女生 |
10 |
||
合计 |
48 |
已知在全班48人中随机抽取1人,抽到关注NBA的学生的概率为.
(1)请将上面的表补充完整(不用写计算过程),并判断是否有95%的把握认为关注NBA与性别有关?说明你的理由;
(2)设甲,乙是不关注NBA的6名男生中的两人,丙,丁,戊是关注NBA的10名女生中的3人,从这5人中选取2人进行调查,求:甲,乙至少有一人被选中的概率.
答题参考
P(K2≥k) |
0.10 |
0.05 |
0.010 |
0.005 |
k0 |
2.706 |
3.841 |
6.635 |
7.879 |
)已知向量满足
,且
,令
.
(1)求(用
表示);
(2)当时,
对任意的
恒成立,求实数
的取值范围。
已知
(1) 求的值. (2)求
的值.
已知向量 =(cos
,sin
),
=(cos
,sin
),
。
(1)求cos(-
)的值;
(2)若0<<
,-
<
<0,且sin
=-
,求sin
的值.
已知,
, 且
(1) 求函数的解析式;
(2) 当时,
的最小值是-4 , 求此时函数
的最大值, 并求出相应的
的值.