已知函数。
(1)若函数是
上的增函数,求实数
的取值范围;
(2)当时,若不等式
在区间
上恒成立,求实数
的取值范围;
(3)对于函数若存在区间
,使
时,函数
的值域也是
,则称
是
上的闭函数。若函数
是某区间上的闭函数,试探求
应满足的条件。
若在
上有最小值,则实数
的取值范围是_____
已知函数R).
(Ⅰ)若,求曲线
在点
处的的切线方程;
(Ⅱ)若对任意
恒成立,求实数
的取值范围.
已知椭圆(a>b>0)的焦距为4,且与椭圆
有相同的离心率,斜率为
的直线
经过点
(0,1),与椭圆
交于不同两点
、
.
(1)求椭圆的标准方程;
(2)当椭圆的右焦点
在以
为直径的圆内时,求
的取值范围.
三棱柱中,侧棱与底面垂直,
,
,
分别是
,
的中点.
(Ⅰ)求证:平面
;
(Ⅱ)求证:平面
;
(Ⅲ)求三棱锥的体积.
已知函数f(x)=ax-1-ln x(a∈R).
(1)讨论函数f(x)的单调性;
(2)若函数f(x)在x=1处取得极值,不等式f(x)≥bx-2对∀x∈(0,+∞)恒成立,求实数b的取值范围;
(3)当x>y>e-1时,证明不等式exln(1+y)>eyln(1+x).