在平面直角坐标系中,点与点A(-1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于.(Ⅰ)求动点P的轨迹方程;(Ⅱ)设直线AP和BP分别与直线交于点M,N,问:是否存在点P使得△PAB与△PMN的面积相等?若存在,求出点P的坐标;若不存在,说明理由。
(本小题满分14分) 设两个非零向量与不共线, (1)若=+,=2+8,=3(-),求证:三点共线; (2)试确定实数,使+和+共线.
(本小题满分14分) 已知,求下列各式的值: (1);(2).
已知点为圆上的动点,且不在轴上,轴,垂足为,线段中点的轨迹为曲线,过定点任作一条与轴不垂直的直线,它与曲线交于、两点。 (1)求曲线的方程; (2)试证明:在轴上存在定点,使得总能被轴平分。
在数列中,,。 (1)设,求数列的通项公式; (2)求数列的前项和。
函数是定义在上的偶函数,当时,。 (1)当时,求的解析式; (2)若,试判断在的单调性,并证明你的结论。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号