设数列{n}满足1=,n+1=n2+1,.(Ⅰ)当∈(-∞,-2)时,求证:M;(Ⅱ)当∈(0,]时,求证:∈M;(Ⅲ)当∈(,+∞)时,判断元素与集合M的关系,并证明你的结论.
设a,b是非负实数,求证:.
在直角坐标系中,以O为极点,x轴正半轴为极轴建立极坐标系.曲线C的极坐标方程为,M,N分别为C与x轴,y轴的交点. (Ⅰ)写出C的直角坐标方程,并求M,N的极坐标; (Ⅱ)设MN的中点为P,求直线OP的极坐标方程.
如图,已知切⊙于点E,割线PBA交⊙于A、B两点,∠APE的平分线和AE、BE分别交于点C、D.求证: (Ⅰ); (Ⅱ).
已知函数: (1)讨论函数的单调性; (2)若对于任意的,若函数在 区间上有最值,求实数的取值范围.
已知是正数组成的数列,,且点在函数的图象上. (Ⅰ)求数列的通项公式; (Ⅱ)若数列满足,,求证:.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号