如图,A点在x轴上方,外接圆半径
,弦
在
轴上且
轴垂直平分
边,
(1)求外接圆的标准方程
(2)求过点且以
为焦点的椭圆方程
已知命题:方程
有两个不等的负实根;命题
:方程
无实根, 若“
或
”为真,而“
且
”为假,求实数
的取值范围.
如图,在直三棱柱中,
,
,
分别是
的中点。
(1)求证平面
;
(2)求点F到平面ABE的距离。
如图,三棱锥P-ABC中,PA平面ABC,
.
(Ⅰ)求三棱锥P-ABC的体积;
(Ⅱ)证明:在线段PC上存在点M,使得ACBM,并求
的值.
如图1,在直角梯形中,
,
是
的中点,
是AC与
的交点,将
沿
折起到图2中
的位置,得到四棱锥
.
(Ⅰ)证明:平面
;
(Ⅱ)当平面平面
时,四棱锥
的体积为
,求
的值.
如图,PA⊥平面ABCD,矩形ABCD的边长AB=1,BC=2,E为BC的中点.
(1)证明:PE⊥DE;
(2)如果PA=2,求异面直线AE与PD所成的角的大小.