某大楼共5层,4个人从第一层上电梯,假设每个人都等可能地在每一层下电梯,并且他们下电梯与否相互独立. 又知电梯只在有人下时才停止.
(Ⅰ)求某乘客在第层下电梯的概率
;
(Ⅱ)求电梯在第2层停下的概率;
(Ⅲ)求电梯停下的次数的数学期望.
已知圆C:内有一点P(2,2),过点P作直线l交圆C于A、B两点.
(1)当l经过圆心C时,求直线l的方程;
(2)当弦AB被点P平分时,写出直线l的方程
已知两直线,当
为何值时,
与
(1)相交;(2)平行;(3)重合?
(本小题满分16分)已知函数是奇函数
.
(Ⅰ)求实数的值;
(Ⅱ)试判断函数在(
,
)上的单调性,并
证明你的结论;
(Ⅲ)若对任意的,不
等式
恒成立,求实数
的取值范围.
(本小题满分16分)
已知函数f(x)=为偶函数,且函数y=f(x)图象的两相邻对称轴间的距离为
(Ⅰ)求f()的值;
(Ⅱ)将函数y=f(x)的图象向右平移个单位后,再将得到的图象上各点的横坐标延长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)的单调递减区间.
(本小题满分15分)已知函数,
的最大值是1,其图像经过点
.
(1)求的解析式;
(2)已知,且
,
,求
的值.