如图,在三棱柱中,已知
学,,,,,网,
侧面
,
(1)求直线C1B与底面ABC所成角正切值;
(2)在棱(不包含端点
上确定一点
的位置,
使得(要求说明理由).
(3)在(2)的条件下,若,求二面角
的大小.
某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点为圆心的两个同心圆弧和延长后通过点
的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为
米,圆心角为
(弧度).
(1)求关于
的函数关系式;
(2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为,求
关于
的函数关系式,并求出
为何值时,
取得最大值?
如图,四棱锥中,底面
是菱形,
,
,
是
的中点,点
在侧棱
上.
(1)求证:⊥平面
;
(2)若是
的中点,求证:
//平面
;
(3)若,试求
的值.
在中,角
、
、
的对边分别为
、
、
.设向量
,
.
(1)若,
,求角
;(2)若
,
,求
的值.
已知动直线与椭圆
交于
、
两不同点,且△
的面积
=
,其中
为坐标原点.
(1)证明和
均为定值;
(2)设线段的中点为
,求
的最大值;
(3)椭圆上是否存在点
,使得
?若存在,判断△
的形状;若不存在,请说明理由.
已知图像过点
,且在
处的切线方程是
.
(1)求的解析式;
(2)求在区间
上的最大值和最小值.