如图,已知椭圆的长轴,离心率,为坐标原点,过的直线与轴垂直,是椭圆上异于的任意一点,,为垂足,延长至,使得,连接并延长交直线于,为的中点(1)求椭圆方程并证明点在以为直径的圆上(2)试判断直线与圆的位置关系
已知是公比为的等比数列,且成等差数列. ⑴求的值; ⑵设是以为首项,为公差的等差数列,求的前项和.
在中,角所对的边分别为,已知,,,求.
解关于的不等式.
已知过曲线上任意一点作直线的垂线,垂足为,且. ⑴求曲线的方程; ⑵设、是曲线上两个不同点,直线和的倾斜角分别为和, 当变化且为定值时,证明直线恒过定点, 并求出该定点的坐标.
已知在处取得极值,且在点处的切线斜率为. ⑴求的单调增区间; ⑵若关于的方程在区间上恰有两个不相等的实数根,求实数的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号