(本题15分)如图,在四棱锥中,
底面
,
,
,
,
,
是
的中点。
(Ⅰ)证明:;
(Ⅱ)证明:平面
;
(Ⅲ)求二面角的正切值.
(本题14分)口袋内有(
)个大小相同的球,其中有3个红球和
个白球.已知从
口袋中随机取出一个球是红球的概率是,且
。若有放回地从口袋中连续地取四次球(每次只取一个球),在四次取球中恰好取到两次红球的概率大于
。
(Ⅰ)求和
;
(Ⅱ)不放回地从口袋中取球(每次只取一个球),取到白球时即停止取球,记为第一次取到白球时的取球次数,求
的分布列和期望
。
(本题14分)已知向量m =,向量n =
,且m与n所成角为
,其中A、B、C是
的内角。
(Ⅰ)求角B的大小;
(Ⅱ)求的取值范围。
若,且
,
(1)求的最小值及相应 x的值;
(2)若,求x的取值范围.
已知函数(
)
(1)若从集合
中任取一个元素,
从集合
中任取一个元素,求方程
恰有两个不相等实根的概率;
(2)若从区间
中任取一个数,
从区间
中任取一个数,求方程
没有实根的概率.