已知抛物线 和三个点 ,过点 的一条直线交抛物线于 、 两点, 、 的延长线分别交曲线 于 、 .
(1)证明
三点共线;
(2)如果
、
、
、
四点共线,问:是否存在
,使以线段
为直径的圆与抛物线有异于
、
的交点?如果存在,求出
的取值范围,并求出该交点到直线
的距离;若不存在,请说明理由.
如图,已知抛物线:
和⊙
:
,过抛物线
上一点
作两条直线与⊙
相切于
、
两点,分别交抛物线为E、F两点,圆心点
到抛物线准线的距离为
.
(Ⅰ)求抛物线的方程;
(Ⅱ)当的角平分线垂直
轴时,求直线
的斜率;
(Ⅲ)若直线在
轴上的截距为
,求
的最小值.
正方形ADEF与梯形ABCD所在平面互相垂直,,
,
,点M在线段EC上且不与E,C重合.
(Ⅰ)当点M是EC中点时,求证:平面ADEF;
(Ⅱ)当平面BDM与平面ABF所成锐二面角的余弦值为时,求三棱锥M BDE的体积.
已知数列{an}满足:,
,
(Ⅰ)求,并求数列{an}通项公式;
(Ⅱ)记数列{an}前2n项和为,当
取最大值时,求
的值.
在中,角
所对的边为
,且满足
(Ⅰ)求角的值;
(Ⅱ)若且
,求
的取值范围.
已知函数
(1)当时,求函数
的极值;
(2)若函数在定义域内为增函数,求实数m的取值范围;
(3)若,
的三个顶点
在函数
的图象上,且
,
、
、
分别为
的内角A、B、C所对的边。求证: