(本小题满分12分)
如图,在直三棱柱中,
,
,
,点D是
的中点
⑴求证:;
⑵求证:平面
。
(本小题满分12分)
2010年广东亚运会,某运动项目设置了难度不同的甲、乙两个系列,每个系列都有K
和D两个动作,比赛时每位运动员自选一个系列完成,两个动作得分之和为该运动员
的成绩。假设每个运动员完成每个系列中的两个动作的得分是相互独立的,根据赛前
训练统计数据,某运动员完成甲系列和乙系列的情况如下表:
甲系列:
动作 |
K |
D |
||
得分 |
100 |
80 |
40 |
10 |
概率 |
![]() |
![]() |
![]() |
![]() |
乙系列:
动作 |
K |
D |
||
得分 |
90 |
50 |
20 |
0 |
概率 |
![]() |
![]() |
![]() |
![]() |
现该运动员最后一个出场,其之前运动员的最高得分为118分。
(1)若该运动员希望获得该项目的第一名,应选择哪个系列,说明理由,并求其获得第一名的概率;
(2)若该运动员选择乙系列,求其成绩X的分布列及其数学期望EX.
(本小题满分12分)
已知向量与
共线,其中A是
的内角。
(1)求角A的大小;
(2)若BC=2,求面积S的最大值.
(本小题满分10分)选修4—5:不等式选讲
已知关于x的不等式(其中
)。
(1)当a=4时,求不等式的解集;
(2)若不等式有解,求实数a的取值范围。
.(本小题满分10分)选修4—4:坐标系与参数方程
在极坐标系中,曲线,过点A(5,α)(α为锐角且
)作平行于
的直线
,且
与曲线L分别交于B,C两点。(1)以极点为原点,极轴为x轴的正半轴,取与极坐标相同单位长度,建立平面直角坐标系,写出曲线L和直线
的普通方程;(2)求|BC|的长。
(本小题满分10分)选修41:几何证明选讲
如图,相交于A、B两点,AB是
的直径,过A点作
的切线交
于点E,并与BO1的延长线交于点P,PB分别与
、
交于C,D两点。
求证:(1)PA·PD=PE·PC;
(2)AD=AE。