(本小题满分13分)
某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费每满100元可以转动如图所示的圆盘一
次,其中O为圆心,且标有20元、10元、0元的三部分区域面积相等,假定指针停在任一位置都是等可能的.当指针停在某区域时,返相应金额的优惠券。(例如:某顾客消费了218元,第一次转动获得了20元,第二次获得了10元,则其共获得了30元优惠券。)顾客甲和乙都到商场进行了消费,并按照规则参与了活动.
(I)若顾客甲消费了128元,求他获得优惠券面额大于0元的概率?
(II)若顾客乙消费了280元,求他总共获得优惠券金额不低于20元的概率?
某普通高中共有教师人,分为三个批次参加研修培训,在三个批次中男、女教师人数如下表所示:
第一批次 |
第二批次 |
第三批次 |
|
女教师 |
![]() |
![]() |
![]() |
男教师 |
![]() |
![]() |
![]() |
已知在全体教师中随机抽取1名,抽到第二、三批次中女教师的概率分别是、
.
(Ⅰ)求的值;
(Ⅱ)为了调查研修效果,现从三个批次中按的比例抽取教师进行问卷调查,三个批次被选取的人数分别是多少?
(Ⅲ)若从(Ⅱ)中选取的教师中随机选出两名教师进行访谈,求参加访谈的两名教师“分别来自两个批次”的概率.
已知函数图像上点
处的切线与直线
平行(其中
),
(I)求函数的解析式;
(II)求函数上的最小值;
(III)对一切恒成立,求实数
的取值范围。
已知椭圆的一个顶点为A(0,-1),焦点在x轴上.若右焦点到直线的距离为3.
(1)求椭圆的方程;
(2)设椭圆与直线相交于不同的两点M、N.当
时,求m的取值范围.
已知函数在
及
处取得极值.
(1)求、
的值;(2)求
的单调区间.
现有一枚质地均匀的骰子,连续投掷两次,计算:
(1)一共有多少种不同的结果?
(2)其中向上的点数之和是7的结果有多少种?
(3)向上的点数之和是7的概率是多少?