(本小题满分13分)已知函数,其中为常数,且.(I)当时,求在( )上的值域;(II)若对任意恒成立,求实数的取值范围.
已知的顶点分别为,在直线上. (Ⅰ)若,求点的坐标; (Ⅱ)若,求点的坐标.
已知函数. (Ⅰ)求的最小正周期; (Ⅱ)当时,求的最大值和最小值.
已知,求的值.
已知圆,直线过定点A(1,0). (1)若与圆相切,求的方程; (2)若与圆相交于P,Q两点,线段PQ的中点为M,又与的交点为N,判断是否为定值,若是,则求出定值;若不是,请说明理由.
图4,四棱锥P—ABCD中,ABCD为矩形,△PAD为等腰直角三角形, ∠APD=90°,面PAD⊥面ABCD,且AB=1,AD=2,E、F分别为PC和BD的中点. (1)证明:EF∥面PAD; (2)证明:面PDC⊥面PAD.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号