(本小题满分12分)
已知、
分别是直线
和
上的两个动点,线段
的长为
,
是
的中点.
(1)求动点的轨迹
的方程;
(2)过点作直线
(与
轴不垂直)与轨迹
交于
两点,与
轴交于点
.若
,
,证明:
为定值.
如图,在四棱锥中,底面
是矩形,四条侧棱长均相等且
交
于点
.
(Ⅰ)求证:;
(Ⅱ)求证:.
在平面直角坐标系中,已知直线
的斜率为
.
(Ⅰ)若直线过点
,求直线
的方程;
(Ⅱ)若直线在
轴、
轴上的截距之和为
,求直线
的方程.
已知a,b为常数,a¹0,函数.
(1)若a=2,b=1,求在(0,+∞)内的极值;
(2)①若a>0,b>0,求证:在区间[1,2]上是增函数;
②若,
,且
在区间[1,2]上是增函数,求由所有点
形成的平面区域的面积.
设数列{an}满足an+1=2an+n2-4n+1.
(1)若a1=3,求证:存在(a,b,c为常数),使数列{an+f(n)}是等比数列,并求出数列{an}的通项公式;
(2)若an是一个等差数列{bn}的前n项和,求首项a1的值与数列{bn}的通项公式.
如图,已知椭圆的右顶点为A(2,0),点P(2e,
)在椭圆上(e为椭圆的离心率).
(1)求椭圆的方程;
(2)若点B,C(C在第一象限)都在椭圆上,满足,且
,求实数λ的值.