(本小题满分14分)某工厂三个车间共有工人1000名,各车间男、女工人数如下表:
|
第一车间 |
第二车间 |
第三车间 |
女工 |
173 |
100 |
![]() |
男工 |
177 |
![]() |
![]() |
已知在全厂工人中随机抽取1名,抽到第二车间男工的概率是0.15.
(1)求的值;
(2)现用分层抽样的方法在全厂抽取50名工人,问应在第三车间抽取多少名?
(3)已知,求第三车间中女工比男工少的概率.
已知函数.
(1)若,函数
是R上的奇函数,当
时
,(i)求实数
与
的值;(ii)当时,求
的解析式;
(2)若方程的两根中,一根属于区间
,另一根属于区间
,求实数
的取 值范围.
记关于的不等式
的解集为
,不等式
的解集为
.
(1)若,求实数
的取值范围;
(2)若,求集合
;
(3)若且
,求
的取值范围.
一袋中有6个黑球,4个白球.
(1)依次取出3个球,不放回,已知第一次取出的是白球,求第三次取到黑球的概率;
(2)有放回地依次取出3球,已知第一次取的是白球,求第三次取到黑球的概率;
(3)有放回地依次取出3球,求取到白球个数X的分布列、期望和方差.
某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.
一次购物量 |
1至4件 |
5至8件 |
9至12件 |
13至16件 |
17件及以上 |
顾客数(人) |
![]() |
30 |
25 |
![]() |
10 |
结算时间(分钟/人) |
1 |
1.5 |
2 |
2.5 |
3 |
已知这100位顾客中的一次购物量超过8件的顾客占55%.
(1)确定的值,并求顾客一次购物的结算时间
的分布列与数学期望;
(2)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过分钟的概率.(注:将频率视为概率)
已知函数,且任意的
(1)求、
、
的值;
(2)试猜想的解析式,并用数学归纳法给出证明.