(本小题满分16分)定义在上的函数
,如果满足:对任意
,存在常数
,都有
成立,则称
是
上的有界函数,其中
称为函数
的上界.
已知函数;
.
(1)当时,求函数
在
上的值域,并判断函数
在
上是否为有界函数,请说明理由;
(2)若函数在
上是以3为上界的有界函数,求实数
的取值范围;
(3)若,函数
在
上的上界是
,求
的取值范围.
已知数列的前
项和为
,且
,数列
满足
,且点
在直线
上.
(1)求数列、
的通项公式;
(2)求数列的前
项和
.
已知△ABC中,A,B,C的对边分别为a,b,c,且.
(1)若,求边c的大小;
(2)若a=2c,求△ABC的面积.
已知函数
(I)当a=1时,求函数f(x)的最小值;
(II)当a≤0时,讨论函数f(x)的单调性;
(III)是否存在实数a,对任意的x1,x2(0,+∞),且x1≠x2,都有
恒成立.若存在,求出a的取值范围;若不存在,说明理由.
已知各项都不相等的等差数列的前6项和为60,且
为
和
的等比中项.
( I )求数列的通项公式;
(II) 若数列满足
,且
,求数列
的前
项和
.
已知数列的首项
,且满足
(1)设,求证:数列
是等差数列,并求数列
的通项公式;
(2)设,求数列
的前n项和