(本题满分14分)本题共有2个小题,第1小题满分7分,第2小题满分7分.
已知△的周长为
,且
.
(1)求边长的值;
(2)若(结果用反三角函数值表示).
求经过三点A(1,-1),B(1,4),C(4,-2)的圆的方程,并判断与圆的位置关系。
的三外顶点分别为
.
(1)求边AC所在的直线方程;
(2)求AC边上的中线BD所在的直线的方程。
求倾斜角是45°,并且与原点的距离是5的直线的方程.
(14分)已知函数.
(Ⅰ)求函数的最小值;
(Ⅱ)求证:;
(Ⅲ)对于函数与
定义域上的任意实数
,若存在常数
,使得
和
都成立,则称直线
为函数
与
的“分界线”.设函数
,
,
与
是否存在“分界线”?若存在,求出
的值;若不存在,请说明理由.
设函数对任意
,都有
,当
时,
(1)求证:是奇函数;
(2)试问:在时
,
是否有最大值?如果有,求出最大值,如果没有,说明理由.
(3)解关于x的不等式