游客
题文

(本题满分16分,第(1)小题4分,第(2)小题8分,第(3)小题4分)
已知椭圆的左右焦点分别为,短轴两个端点为,且四边形是边长为2的正方形。
(1)求椭圆方程;
(2)若分别是椭圆长轴的左右端点,动点满足,连接,交椭圆于。证明:为定值;
(3)在(2)的条件下,试问轴上是否存在异于点的定点,使得以为直径的圆恒过直线的交点,若存在,求出点的坐标;若不存在,请说明理由。

科目 数学   题型 解答题   难度 较难
登录免费查看答案和解析
相关试题

(本题6分)已知函数
(1)求在处的切线方程;
(2)求该切线与坐标轴所围成的三角形面积。

(本题6分)已知双曲线的中心在原点,焦点为F1F2(—5 ,0),且过点(3,0),
(1)求双曲线的标准方程.
(2)求双曲线的离心率及准线方程。

如图,为半圆,AB为半圆直径,O为半圆圆心,且ODABQ为线段OD的中点,已知|AB|=4,曲线CQ点,动点P在曲线C上运动且保持|PA|+|PB|的值不变.
(1)建立适当的平面直角坐标系,求曲线C的方程;
(2)过D点的直线l与曲线C相交于不同的两点MN,且MDN之间,设=λ,求λ的取值范围.

如图所示的多面体是由底面为的长方体被截面所截面而得到的,其中.
(Ⅰ)求的长;
(Ⅱ)求二面角E-FC1-C的余弦值.

已知椭圆与双曲线共焦点,且过(
(1)求椭圆的标准方程.
(2)求斜率为2的一组平行弦的中点轨迹方程;

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号