已知椭圆与双曲线共焦点,且过(
)
(1)求椭圆的标准方程.
(2)求斜率为2的一组平行弦的中点轨迹方程;
在平面直角坐标系中,曲线
的参数方程为
点
是曲线
上的动点.
(1)求线段的中点
的轨迹的直角坐标方程;
(2) 以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,若直线
的极坐标方程为
,求点
到直线
距离的最大值.
求曲线及直线
,
所围成的平面图形的面积.
(1)解关于的不等式
;
(2)若关于的不等式
有解,求实数
的取值范围.
如图,已知点,圆
是以
为直径的圆,直线
,(
为参数).
(1)以坐标原点为极点,轴正半轴为极轴,建立极坐标系,求圆
的极坐标方程;
(2)过原点作直线
的垂线,垂足为
,若动点
满足
,当
变化时,求点
轨迹的参数方程,并指出它是什么曲线.
已知.
(1)求的单调区间;
(2)证明:当时,
恒成立;
(3)任取两个不相等的正数,且
,若存在
使
成立,证明:
.