如图,设四棱锥的底面为菱形,且∠
,
,
。
(1)求证:平面平面
;
(2)设为
的中点,求三棱锥
的体积.
(本小题满分12分)已知是正项数列,
,且点
(
)在函数
的图像上.
(1)求数列的通项公式;
(2)若列数满足
,
,求证:
.
(本小题满分10分)选修4—5:不等式选讲
已知函数,
.
(1)当时,求不等式
的解集;
(2)设,且当
时,
,求
的取值范围.
(本小题满分10分)选修4—4:坐标系与参数方程
已知曲线的参数方程为
(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)把的参数方程化为极坐标方程;
(2)求与
交点的极坐标
.
(本小题满分10分)选修4—1:几何证明选讲
如图,直线为圆的切线,切点为
,点
在圆上,
的角平分线
交圆于点
,
垂直
交圆于点
.
(1)证明:;
(2)设圆的半径为1,,延长
交
于点
,求
外接圆的半径.