(本题满分18分,第(1)小题4分,第(2)小题6分,第(3)小题8分)
在平行四边形
中,已知过点
的直线与线段
分别相交于点
。若
。
(1)求证:
与
的关系为
;
(2)设
,定义函数
,点列
在函数
的图像上,且数列
是以首项为1,公比为
的等比数列,
为原点,令
,是否存在点
,使得
?若存在,请求出
点坐标;若不存在,请说明理由。
(3)设函数
为
上偶函数,当
时
,又函数
图象关于直线
对称,当方程
在
上有两个不同的实数解时,求实数
的取值范围。
设数列{an}是等差数列,a5=6.
(1)当a3=3时,请在数列{an}中找一项am,使得a3,a5,am成等比数列;
(2)当a3=2时,若自然数n1,n2,…,nt,… (t∈N*)满足5<n1<n2<…<nt<…使得a3,a5,
,
,…,
,…是等比数列,求数列{nt}的通项公式.
已知等比数列{an}中,a3=
,S3=4
,求a1.
某林场有荒山3 250亩,每年春季在荒山上植树造林,第一年植树100亩,计划每年比上一年多植树50亩(全部成活)
(1)问需要几年,可将此山全部绿化完?
(2)已知新种树苗每亩的木材量是2立方米,树木每年自然增长率为10%,设荒山全部绿化后的年底的木材总量为S.求S约为多少万立方米?(精确到0.1)
在等比数列{an}中,a1+a2+a3+a4+a5=8且
+
+
+
+
=2,求a3.
已知数列{an}的前n项和为Sn,且对任意n∈N*有an+Sn=n.
(1)设bn=an-1,求证:数列{bn}是等比数列;
(2)设c1=a1且cn=an-an-1 (n≥2),求{cn}的通项公式.