(本题满分14分,其中第1小题8分,第2小题6分)
一企业生产的某产品在不做电视广告的前提下,每天销售量为件. 经市场调查后得到如下规律:若对产品进行电视广告的宣传,每天的销售量
(件)与电视广告每天的播放量
(次)的关系可用如图所示的程序框图来体现.
(1)试写出该产品每天的销售量
(件)关于电视广告每天的播放量
(次)的函数关系式;
(2)要使该产品每天的销售量比不做电视广告时的销售量至少增加,则每天电视广告的播放量至少需多少次?
已知椭圆的中心在坐标原点,短轴长为4,且有一个焦点与抛物线
的焦点重合.
(1)求椭圆的方程;
(2)已知过定点且斜率不为0的直线
交椭圆
于
两点,试问在
轴上是否存在一个定点
使得
始终平分
?若存在,求出点
的坐标,若不存在,请说明理由.
如图,正三棱锥的所有棱长都为2,
.
(1)当时,求证:
平面
;
(2)当二面角的大小为
时,求实数
的值.
威力实施“爱的教育”实践活动,宇华教育集团决定举行“爱在宇华”教师演讲比赛.焦作校区决定从高中部、初中部、小学部和幼教部这四个部门选出12人组成代表队代表焦作校区参赛,选手来源如下表:
部门 |
高中部 |
初中部 |
小学部 |
幼教部 |
人数 |
4 |
4 |
2 |
2 |
焦作校区选手经过出色表现获得冠军,现要从中选出两名选手代表冠军队发言.
(1)求这两名队员来自同一部门的概率;
(2)设选出的两名选手中来自高中部的人数为,求随机变量
的分布列及数学期望
.
已知等差数列的各项互不相等,前两项的和为10,设向量
,且
.
(1)求数列的通项公式;
(2)若的前
项和为
,求证:
在平面直角坐标系中,
是抛物线
的焦点,圆
过
点与
点,且圆心
到抛物线
的准线的距离为
.
(1)求抛物线的方程;
(2)已知抛物线上一点,过点
作抛物线的两条弦
和
,且
,判断直线
是否过定点?并说明理由.