(本小题满分12分) 设O为坐标原点,点P的坐标 (I)在一个盒子中,放有标号为1,2,3的三张卡片,现从此盒中有放回地先后抽到两张卡片的标号分别记为x,y,求|OP|的最大值,并求事件“|OP|取到最大值”的概率; (II)若利用计算机随机在[0,3]上先后取两个数分别记为x,y,求P点在第一象限的概率.
如果2n的展开式中第4项与第6项的系数相等,求n及展开式中的常数项.
已知椭圆经过点,且两焦点与短轴的两个端点的连线构成一正方形. (1)求椭圆的方程; (2)直线与椭圆交于,两点,若线段的垂直平分线经过点,求 (为原点)面积的最大值.
已知函数. (1)当时,求曲线在点处的切线方程; (2)当时,讨论的单调性.
已知数列的前项和为,且,数列满足,且. (1)求数列,的通项公式; (2)设,求数列的前项和.
如图1,在直角梯形中,,.把沿折起到的位置,使得点在平面上的正投影恰好落在线段上,如图2所示,点分别为棱的中点. (1)求证:平面平面; (2)求证:平面; (3)若,求四棱锥的体积.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号