游客
题文

(本小题满分12分)
设O为坐标原点,点P的坐标
(I)在一个盒子中,放有标号为1,2,3的三张卡片,现从此盒中有放回地先后抽到两张卡片的标号分别记为x,y,求|OP|的最大值,并求事件“|OP|取到最大值”的概率;
(II)若利用计算机随机在[0,3]上先后取两个数分别记为x,y,求P点在第一象限的概率.

科目 数学   题型 解答题   难度 较难
登录免费查看答案和解析
相关试题

已知
⑴若的极值点,求实数值。
⑵若对都有成立,求实数的取值范围。

已知点,点,直线都是圆的切线(点不在轴上)。
⑴求过点且焦点在轴上抛物线的标准方程;
⑵过点作直线与⑴中的抛物线相交于两点,问是否存在定点,使.为常数?若存在,求出点的坐标与常数;若不存在,请说明理由。

一学生参加某高校的自主招生考试,须依次参加A、B、C、D、E五项考试,如果前四项中有两项不合格或第五项不合格,则该考生就被淘汰,考试即结束;考生未被淘汰时,一定继续参加后面的考试。已知每一项测试都是相互独立的,该生参加A、B、C、D四项考试不合格的概率均为,参加第五项不合格的概率为
⑴求该生被录取的概率;
⑵记该生参加考试的项数为,求的分布列和期望。

一个多面体的直观图和三视图如图所示,其中分别是的中点,上的一动点,主视图与俯视图都为正方形。

⑴求证:
⑵当时,在棱上确定一点,使得∥平面,并给出证明。
⑶求二面角的平面角余弦值。

已知数列的各项全为正数,观察流程图,当时,;当时,

⑴写出时,的表达式(用,等表示);
⑵求的通项公式;
⑶令,求.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号