有关专家建议,在未来几年内,中国的通货膨胀率保持在3%左右,这将对我国经济的稳定有利无害.所谓通货膨胀率为3%,指的是每年消费品的价格增长率为3%.在这种情况下,某种品牌的钢琴2004年的价格是10 000元,请用流程图描述这种钢琴今后四年的价格变化情况,并输出四年后的价格.
已知中心在原点,焦点在坐标轴上的椭圆,它的离心率为
,一个焦点和抛物线
的焦点重合,过直线
上一点
引椭圆
的两条切线,切点分别是
.
(Ⅰ)求椭圆的方程;
(Ⅱ)若在椭圆上的点
处的椭圆的切线方程是
. 求证:直线
恒过定点
;并出求定点
的坐标.
(Ⅲ)是否存在实数,使得
恒成立?(点
为直线
恒过的定点)若存在,求出
的值;若不存在,请说明理由。
如图,四边形中,
为正三角形,
,
,
与
交于
点.将
沿边
折起,使
点至
点,已知
与平面
所成的角为
,且
点在平面
内的射影落在
内.
(Ⅰ)求证:平面
;
(Ⅱ)若已知二面角的余弦值为
,求
的大小.
2012年3月2日,国家环保部发布了新修订的《环境空气质量标准》.其中规定:居民区中的PM2.5(PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称可入肺颗粒物)年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米. 某城市环保部门随机抽取了一居民区去年40天的PM2.5的24小时平均浓度的监测数据,数据统计如下:
组别 |
PM2.5(微克/立方米) |
频数(天) |
频率 |
第一组 |
(0,15] |
4 |
0.1 |
第二组 |
(15,30] |
12 |
0.3 |
第三组 |
(30,45] |
8 |
0.2 |
第四组 |
(45,60] |
8 |
0.2 |
第三组 |
(60,75] |
4 |
0.1 |
第四组 |
(75,90) |
4 |
0.1 |
(Ⅰ)写出该样本的众数和中位数(不必写出计算过程);
(Ⅱ)求该样本的平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境是否需要改进?说明理由;
(Ⅲ)将频率视为概率,对于去年的某2天,记这2天中该居民区PM2.5的24小时平均浓度符合环境空气质量标准的天数为,求
的分布列及数学期望
.
已知数列的相邻两项
是关于
的方程
的两根,且
.
(Ⅰ)求证:数列是等比数列;
(Ⅱ)求数列的前
项和
;
(Ⅲ)设函数若
对任意的
都成立,求
的取值范围。
在直角坐标系xOy中,椭圆C1: ="1" (a>b>0)的左、右焦点分别为F1、F2, F2也是抛物线C2:y2=4x的焦点,点M为C1与C2在第一象限的交点,且|MF2|=
.
(1)求C1的方程;
(2)直线l∥OM,与C1交于A、B两点,若·
=0,求直线l的方程.