一个口袋中装有大小相同的2个红球,3个黑球和4个白球,从口袋中一次摸出一个球,摸出的球不再放回. (Ⅰ)连续摸球2次,求第一次摸出黑球,第二次摸出白球的概率; (Ⅱ)如果摸出红球,则停止摸球,求摸球次数不超过3次的概率.
已知数列满足: (I)求的值; (Ⅱ)求证:数列是等比数列; (Ⅲ)令(),如果对任意,都有,求实数的取值范围.
已知函数 (1)讨论的奇偶性与单调性; (2)若不等式的解集为的值;
已知数列的前n项和为Sn,且. (1)求数列的通项; (2)设,求.
在10件产品中,有3件一等品,4件二等品,3件三等品。从这10件产品中任取3件,求: (I) 取出的3件产品中一等品件数X的分布列和数学期望; (II) 取出的3件产品中一等品件数多于二等品件数的概率。
已知数列的前项和为,点均在函数的图象上 (1)求数列的通项公式 (2)若数列的首项是1,公比为的等比数列,求数列的前项和.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号