游客
题文

(本题满分16分;第(1)小题5分,第(2)小题5分,第(3)小题6分)
为坐标平面上的点,直线为坐标原点)与抛物线交于点(异于).
(1)      若对任意,点在抛物线上,试问当为何值时,点在某一圆上,并求出该圆方程
(2)      若点在椭圆上,试问:点能否在某一双曲线上,若能,求出该双曲线方程,若不能,说明理由;
(3)      对(1)中点所在圆方程,设是圆上两点,且满足,试问:是否存在一个定圆,使直线恒与圆相切.

科目 数学   题型 解答题   难度 较难
知识点: 平面解析几何的产生──数与形的结合
登录免费查看答案和解析
相关试题

设函数
(1)求在点处的切线方程;
(2)求在区间的最大值与最小值。

学校在开展学雷锋活动中,从高二甲乙两班各选3名学生参加书画比赛,其中高二甲班选出了1女2男,高二乙班选出了1男2女。
(1)若从6个同学中抽出2人作活动发言,写出所有可能的结果,并求高二甲班女同学,高二乙班男同学至少有一个被选中的概率。
(2)若从高二甲班和高二乙班各选一名现场作画,写出所有可能的结果,并求选出的2名同学性别相同的概率。

已知复数,问:当为何实数时?
(1)为虚数; (2)在复平面内对应的点在虚轴的负半轴上;
(3)

已知函数
①当时,求函数在上的最大值和最小值;
②讨论函数的单调性;
③若函数处取得极值,不等式恒成立,求实数的取值范围。

已知椭圆C的长轴长为,一个焦点的坐标为(1,0).
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设直线l:y=kx与椭圆C交于A,B两点,点P为椭圆的右顶点.
(ⅰ)若直线l斜率k=1,求△ABP的面积;
(ⅱ)若直线AP,BP的斜率分别为,求证:为定值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号