(本题满分16分;第(1)小题5分,第(2)小题5分,第(3)小题6分)
设
、
为坐标平面
上的点,直线
(
为坐标原点)与抛物线
交于点
(异于
).
(1) 若对任意
,点
在抛物线
上,试问当
为何值时,点
在某一圆上,并求出该圆方程
;
(2) 若点
在椭圆
上,试问:点
能否在某一双曲线上,若能,求出该双曲线方程,若不能,说明理由;
(3) 对(1)中点
所在圆方程
,设
、
是圆
上两点,且满足
,试问:是否存在一个定圆
,使直线
恒与圆
相切.
12分)已知函数

(1)设
是正数组成的数列,前
项和为
,其中
,若点

在函数
的图象上,求证:点
也在
的图象上;
(2)求函数
在区间
内的极值.
下
2分)已知
的展开式中,前三项的二项式系数之和为37.
(1)求x的整数次幂的项;
(2)展开式的第几项的二项式系数大于相邻两项的二项式系数.
在每道单项选择题给出的4个备选答案中,只有一个是正确的.若对4道选择题中的每一道都任意选定一个答案,求这4道题中:
(1)恰有两道题答对的概率;
(2)至少答对一道题的概率。
7名师生站成一排照相留念,其中老师1人,男生4人,女生2人,在下列情况下,各有不同站法多少种?
(1)两中女生必须相邻而站;
(2)4名男生互不相邻;
(3)若4名男生身高都不等,按从高到低的一种顺序站;
(4)老师不站中间,女生不站两端.

在△ABC中,a、b、c分别为角A、B、C的对边,已知
,c=
,又△ABC的面积为S△ABC=
,求a,b的值.