游客
题文

本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
从数列中取出部分项,并将它们按原来的顺序组成一个数列,称之为数列的一个子数列.
设数列是一个首项为、公差为的无穷等差数列.
(1)若成等比数列,求其公比
(2)若,从数列中取出第2项、第6项作为一个等比数列的第1项、第2项,试问该数列是否为的无穷等比子数列,请说明理由.
(3)若,从数列中取出第1项、第项(设)作为一个等比数列的第1项、第2项.求证:当为大于1的正整数时,该数列为的无穷等比子数列.

科目 数学   题型 解答题   难度 较难
知识点: 一阶、二阶线性常系数递归数列的通项公式
登录免费查看答案和解析
相关试题

对于任意实数,不等式恒成立,试求实数的取值范围.

已知函数
(1)若函数在定义域内单调递增,求的取值范围;
(2)若且关于x的方程上恰有两个不相等的实数根,求实数的取值范围;
(3)设各项为正的数列满足:求证:

如图,⊙的直径的延长线与弦的延长线相交于点,
为⊙上一点,AE=AC ,于点,且,
(1)求的长度.
(2)若圆F且与圆内切,直线PT与圆F切于点T,求线段PT的长度

甲乙两运动员进行射击训练,已知他们击中目标的环数都稳定在7,8,9,10环,且每次射击成绩互不影响,射击环数的频率分布表如下,
甲运动员

射击环数
频数
频率
7
10
0.1
8
10
0.1
9

0.45
10
35

合计
100
1

乙运动员

射击环数
频数
频率
7
8
0.1
8
12
0.15
9


10

0.35
合计
80
1

若将频率视为概率,回答下列问题,
(1)求甲运动员击中10环的概率
(2)求甲运动员在3次射击中至少有一次击中9环以上(含9环)的概率
(3)若甲运动员射击2次,乙运动员射击1次,表示这3次射击中击中9环以上(含9环)的次数,求的分布列及.

的内角所对的边分别为.
(1)求角的大小;
(2)若,求的周长的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号