已知射线和点
,试在
上求一点
使得
所在直线
和
,直线
在第一象限围成的三角形面积达到最小值,并写出此时直线
的方程。
(本小题满分10分) 已知数列通项公式为
,其中
为常数,且
,
.等式
,其中
为实常数.
(1)若,求
的值;
(2)若,且
,求实数
的值.
(本小题满分10分)如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,AP=1,AD=,E为线段PD上一点,记
.当
时,二面角
的平面角的余弦值为
.
(1)求AB的长;
(2)当时,求直线BP与直线CE所成角的余弦值.
(本小题满分10分,不等式选讲)
已知实数满足
,求
的最小值.
(本小题满分10分,坐标系与参数方程选讲)
在平面直角坐标系xOy中,已知直线的参数方程为:
(t为参数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=2cosθ.直线
与圆相交于A,B两点,求线段AB的长.
(本小题满分10分,矩阵与变换)
设矩阵,
,若
,求矩阵M的特征值.