2010年4月14日清晨我国青海省玉树县发生里氏7.1级强震。国家抗震救灾指挥部迅速成立并调拨一批救灾物资从距离玉树县400千米的某地A运往玉树县,这批救灾物资随17辆车以
千米/小时的速度匀速直达灾区,为了安全起见,每两辆车之间的间距不得小于
千米。设这批救灾物资全部运送到灾区(不考虑车辆的长度)所需要的时间为
小时。求这批救灾物资全部运送到灾区所需要的最短时间,并指出此时车辆行驶的速度。
某校高三(1)班共有名学生,他们每天自主学习的时间全部在
分钟到
分钟之间,按他们学习时间的长短分
个组统计,得到如下频率分布表:
组别 |
分组 |
频数 |
频率 |
第一组 |
![]() |
![]() |
|
第二组 |
![]() |
![]() |
![]() |
第三组 |
![]() |
![]() |
![]() |
第四组 |
![]() |
![]() |
![]() |
第五组 |
![]() |
![]() |
(1)求分布表中,
的值;
(2)王老师为完成一项研究,按学习时间用分层抽样的方法从这名学生中抽取
名进行研究,问应抽取多少名第一组的学生?
(3)已知第一组学生中男、女生人数相同,在(2)的条件下抽取的第一组学生中,既有男生又有女生的概率是多少?
已知函数
(1)求的值;
(2)若,且
,求
.
函数的定义域为
,若存在常数
,使得
对一切实数
均成立,则称
为“圆锥托底型”函数.
(1)判断函数,
是否为“圆锥托底型”函数?并说明理由.
(2)若是“圆锥托底型” 函数,求出
的最大值.
(3)问实数、
满足什么条件,
是“圆锥托底型” 函数.
我们将不与抛物线对称轴平行或重合且与抛物线只有一个公共点的直线称为抛物线的切线,这个公共点称为切点.解决下列问题:
已知抛物线上的点
到焦点的距离等于4,直线
与抛物线相交于不同的两点
、
,且
(
为定值).设线段
的中点为
,与直线
平行的抛物线的切点为
..
(1)求出抛物线方程,并写出焦点坐标、准线方程;
(2)用、
表示出
点、
点的坐标,并证明
垂直于
轴;
(3)求的面积,证明
的面积与
、
无关,只与
有关.
某市2013年发放汽车牌照12万张,其中燃油型汽车牌照10万张,电动型汽车2万张.为了节能减排和控制总量,从2013年开始,每年电动型汽车牌照按50%增长,而燃油型汽车牌照每一年比上一年减少万张,同时规定一旦某年发放的牌照超过15万张,以后每一年发放的电动车的牌照的数量维持在这一年的水平不变.
(1)记2013年为第一年,每年发放的燃油型汽车牌照数构成数列,每年发放的电动型汽车牌照数为构成数列
,完成下列表格,并写出这两个数列的通项公式;
(2)从2013年算起,求二十年发放的汽车牌照总量.
![]() |
![]() |
![]() |
![]() |
|
![]() |
![]() ![]() |
![]() |
![]() |