(本小题满分14分)
已知函数的图象在
上连续不断,定义:
,
.
其中,表示函数
在
上的最小值,
表示函数
在
上的最大值.若存在最小正整数
,使得
对任意的
成立,则称函数
为
上的“
阶
收缩函数”.
(Ⅰ)若,
,试写出
,
的表达式;
(Ⅱ)已知函数,
,试判断
是否为
上的“
阶收缩函数”,如果是,求出对应的
;如果不是,请说明理由;
(Ⅲ)已知,函数
是
上的2阶收缩函数,求
的取值范围.
如图,从边长为的正方形铁皮的四个角各截去一个边长为
的小正方形,再将四边向上折起,做成一个无盖的长方体铁盒,且要求长方体的高度
与底面正方形的边长的比不超过常数
,问:
取何值时,长方体的容积V有最大值?
如图,四边形ABCD是直角梯形,∠ABC=∠BAD=90°,SA⊥
平面ABCD, SA=AB=BC=2,AD=1.
(Ⅰ)求SC与平面ASD所成的角余弦;
(Ⅱ)求平面SAB和平面SCD所成角的余弦.
已知,试证:
;并求函数
(
)的最小值.
已知:
:
.
(Ⅰ)若,求实数
的值;
(Ⅱ)若是
的充分条件,求实数
的取值范围.
(本小题满分14分)在如图所示的直角坐标系中,为单位圆在第一象限内圆弧上的动点,
,设
,过
作直线
,并交直线
于点
.
(Ⅰ)求点的坐标 (用
表示) ;
(Ⅱ)判断能否为
?若能,求出点
的坐标,若不能,请说明理由.
(Ⅲ) 试求的面积的最大值,并求出相应
值.