(本小题满分14分)已知函数的图象在上连续不断,定义:,.其中,表示函数在上的最小值,表示函数在上的最大值.若存在最小正整数,使得对任意的成立,则称函数为上的“阶收缩函数”.(Ⅰ)若,,试写出,的表达式;(Ⅱ)已知函数,,试判断是否为上的“阶收缩函数”,如果是,求出对应的;如果不是,请说明理由;(Ⅲ)已知,函数是上的2阶收缩函数,求的取值范围.
设直线l的斜率为k,在下列情形中,求l的倾斜角: (1); (2)k=-cosα,
设. (1)若在上的最大值是,求的值; (2)若对于任意,总存在,使得成立,求的取值范围; (3)若在上有解,求的取值范围.
设的定义域为,对于任意正实数恒有,且当时, (1)求的值; (2)求证:在上是增函数; (3)解关于的不等式.
已知函数. (Ⅰ) 求函数的最小值和最小正周期; (Ⅱ) 已知内角的对边分别为,且,若向量与共线,求的值.
已知,不等式的解集是, (Ⅰ) 求的解析式; (Ⅱ) 若对于任意,不等式恒成立,求t的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号