在正四棱柱中,E,F分别是
的中点,G为
上任一点,EC与底面ABCD所成角的正切值是4.
(Ⅰ)求证AGEF;
(Ⅱ)确定点G的位置,使AG面CEF,并说明理由;
(Ⅲ)求二面角的余弦值。
从某居民区随机抽取10个家庭,获得第个家庭的月收入
(单位:千元)与月储蓄
(单位:千元)的数据资料,算得
,
,
,
.
(1)求家庭的月储蓄对月收入
的线性回归方程
;
(2)判断变量与
之间是正相关还是负相关;
(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.
其中,
为样本平均值,线性回归方程也可写为
附:线性回归方程中,
,
,
设过原点的直线与圆
:
的一个交点为
,点
为线段
的中点。
(1)求圆的极坐标方程;
(2)求点轨迹的极坐标方程,并说明它是什么曲线.
已知为复数,
为纯虚数,
,且
,求复数
.
已知函数,
,其中
.
(1)若是函数
的极值点,求实数
的值;
(2)若对任意的(
为自然对数的底数)都有
≥
成立,求实数
的取值范围.
设函数f(x)=x2-mlnx,g(x)=x2-x+a.
(1)当a=0时,f(x)≥g(x)在(1,+∞),上恒成立,求实数m的取值范围;
(2)当m=2时,若函数h(x)=f(x)-g(x)在[1,3]上恰有两个不同的零点,求实数a的取值范围.