(本题满分13分)
某运动员进行20次射击练习,记录了他射击的有关数据,得到下表:
环数 |
7 |
8 |
9 |
10 |
命中次数 |
2 |
7 |
8 |
3 |
(Ⅰ)求此运动员射击的环数的平均数;
(Ⅱ)若将表中某一环数所对应的命中次数作为一个结果,在四个结果(2次、7次、8次、3次)中,随机取2个不同的结果作为基本事件进行研究,记这两个结果分别为次、
次,每个基本事件为(m,n).
求“”的概率.
已知:对任意
,不等式
恒成立;
:存在
,使不等式
成立,若“
或
”为真,“
且
”为假,求实数
的取值范围.
在平面直角坐标系中,
.
(1)求以线段为邻边的平行四边形的两条对角线的长;
(2)设实数满足
,求
的值.
(本小题满分14分)
已知数列,
,
(Ⅰ)求数列的通项公式
;
(Ⅱ)当时,求证:
(Ⅲ)若函数满足:
求证:
(本小题满分13分)
已知函数.
(Ⅰ)求函数的极大值;
(Ⅱ)若对满足
的任意实数
恒成立,求实数
的取值范围(这里
是自然对数的底数);
(Ⅲ)求证:对任意正数、
、
、
,恒有
.
(本小题满分12分)
某工厂去年的某产品的年销售量为100万只,每只产品的销售价为10元,每只产品固定成本为8元.今年,工厂第一次投入100万元(科技成本),并计划以后每年比上一年多投入100万元(科技成本),预计销售量从今年开始每年比上一年增加10万只,第n次投入后,每只产品的固定成本为(k>0,k为常数,
且n≥0),若产品销售价保持不变,第n次投入后的年利润为
万元.
(Ⅰ)求k的值,并求出的表达式;
(Ⅱ)若今年是第1年,问第几年年利润最高?最高利润为多少万元?