游客
题文

(本小题满分16分)设函数fx)=x4bx2cxd,当xt1时,fx)有极小值.
(1)若b=-6时,函数fx)有极大值,求实数c的取值范围;
(2)在(1)的条件下,若存在实数c,使函数fx)在闭区间[m-2,m+2]上单调递增,求实数m的取值范围;
(3)若函数fx)只有一个极值点,且存在t2∈(t1t1+1),使f ′(t2)=0,证明:函数gx)=fx)-x2t1x在区间(t1t2)内最多有一个零点.

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

已知椭圆中心在原点,焦点在y轴上,焦距为4,离心率为

(1)求椭圆方程;
(2)设椭圆在y轴的正半轴上的焦点为M,又点A和点B在椭圆上,且M分有向线段所成的比为2,求线段AB所在直线的方程.

在直角梯形PBCD中,,A为PD的中点,如下左图。将沿AB折到的位置,使,点E在SD上,且,如下图。
(1)求证:平面ABCD;
(2)求二面角E—AC—D的正切值.

在平面直角坐标系O中,直线与抛物线=2相交于AB两点。
(1)求证:命题“如果直线过点T(3,0),那么=3”是真命题;
(2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由。

已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,右顶点为,设点.
(1)求该椭圆的标准方程;
(2)若是椭圆上的动点,求线段中点的轨迹方程;
(3)过原点的直线交椭圆于点,求面积的最大值。

已知直线l经过点(0,-2),其倾斜角是60°.
(1)求直线l的方程;
(2)求直线l与两坐标轴围成三角形的面积.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号