已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为
,右顶点为
,设点
.
(1)求该椭圆的标准方程;
(2)若是椭圆上的动点,求线段
中点
的轨迹方程;
(3)过原点的直线交椭圆于点
,求
面积的最大值。
已知椭圆,直线
与椭圆交于A、B两点,M是线段AB的中点,连接OM并延长交椭圆于点C.直线AB与直线OM的斜率分别为k、m,且
.
(1)求的值;
(2)若直线AB经过椭圆的右焦点F,问:对于任意给定的不等于零的实数k,是否存在a∈,使得四边形OACB是平行四边形,请证明你的结论;
已知集合A=,B={x|x2-2x-m<0},
(1)当m=3时,求A∩(∁RB);
(2)若A∩B={x|-1<x<4},求实数m的值
已知椭圆E:(
0)过点(0,
),其左焦点
与点P(1,
)的连线与圆
相切。
(1)求椭圆E的方程;
(2)设Q为椭圆E上的一个动点,试判断以为直径的圆与圆
的位置关系,并证明
如图,P—ABCD是正四棱锥,是正方体,其中
(1)求证:;
(2)求平面PAD与平面所成的锐二面角
的余弦值;
(3)求到平面PAD的距离
在△ABC中,a、b是方程x2-2mx+2=0的两根,且2cos(A+B)=-1
(1)求角C的度数;
(2)求△ABC的面积