本小题满分15分)将数列
中的所有项按每一行比上一行多一项的规则排成如下数表:



……
记表中的第一列数
构成的数列为
,
.
为数列
的前
项和,且满足
.
(Ⅰ)证明数列
成等差数列,并求数列
的通项公式;
(Ⅱ)上表中,若从第三行起,每一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当
时,求上表中第
行所有项的和.
已知函数
.
(Ⅰ)求
;
(Ⅱ)求函数
图象上的点
处的切线方程.
已知函数
,
,
,其中
且
.
(I)求函数
的导函数
的最小值;
(II)当
时,求函数
的单调区间及极值;
(III)若对任意的
,函数
满足
,求实数
的取值范围.
当
时,
,
(I)求
;
(II)猜想
与
的关系,并用数学归纳法证明.
统计表明,某种型号的汽车在匀速行驶中每小时耗油量y(升)关于行驶速度x(千米/小时)的函数解析式可以表示为:
(
≤120).已知甲、乙两地相距100千米。
(Ⅰ)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?
(Ⅱ)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?
如图,四棱锥
中,底面
为平行四边形,
,
,
⊥底面
.
(1)证明:平面
平面
;
(2)若二面角
为
,求
与平面
所成角的正弦值。