某班级共有60名学生,先用抽签法从中抽取部分学生调查他们的学习情况,若每位学生被抽到的概率为.
(1)求从中抽取的学生数;
(2)若抽查结果如下,先确定x,再完成频率分布直方图;
每周学习时间(小时) |
[0,10) |
[10,20) |
[20,30) |
[30,40] |
人数 |
2 |
4 |
x |
1 |
(3)估计该班学生每周学习时间的平均数(同一组中的数据用该组区间的中点值作代表).
在城的西南方向上有一个观测站
,在城
的南偏东
的方向上有一条笔直的公路,一辆汽车正沿着该公路上向城
驶来.某一刻,在观测站
处观测到汽车与
处相距
,在
分钟后观测到汽车与
处相距
.若汽车速度为
,求该汽车还需多长时间才能到达城
?
已知函数.
(I) 若,求
的单调区间;
(II)已知是
的两个不同的极值点,且
,若
恒成立,求实数b的取值范围.
已知动点到点
的距离,等于它到直线
的距离.
(Ⅰ)求点的轨迹
的方程;
(Ⅱ)过点任意作互相垂直的两条直线
,分别交曲线
于点
和
.设线段
,
的中点分别为
,求证:直线
恒过一个定点;
(Ⅲ)在(Ⅱ)的条件下,求面积的最小值.
如图,在长方体中,
,点
在棱
上移动
(Ⅰ)证明:;
(Ⅱ)当为
的中点时,求点
到面
的距离;
|
(Ⅲ)等于何值时,二面角
的大小为