(13分)在直角△ABC中AB=4,BC=3,AC=5,将此三角形绕AB边所在直线旋转一周得到一个圆锥
(1)求圆锥的侧面积和体积;
(2)求这个圆锥的内切球的表面积。
工作,办公室里只有一部电话机,设经该机打进的电话是打给甲、乙、丙的概率依次为、
、
。若在一段时间内打进三个电话,且各个电话相互独立。
求:(1)这三个电话是打给同一个人的概率。
(2)这三个电话中恰有两个是打给甲的概率。
AD=2,PA=2,PD=2,∠PAB=60°。
(1)证明:AD⊥平面PAB;
(2)求异面直线PC与AD所成的角的大小;
(3)求二面角P-BD-A的大小。
、已知数列 的前n项和Sn=2n2+2n数列
的前 n 项和 Tn=2-bn
(1)求数列 与
的通项公式;
(2)设Cn=an2·bn,证明当且仅当n≥3时,Cn+1<Cn
在△ABC中,内角A、B、C所对的边分别是a、b、c,已知c=2,C=
(1)若△ABC的面积为,求a、b;
(2)若sinB=2sinA,求△ABC的面积。
(本小题共12分)
设函数,方程
有唯一解,其中实数
为常数,
,
(1)求的表达式;
(2)求的值;
(3)若且
,求证: