如图,平面
平面
,
是以
为斜边的等腰直角三角形,
分别为
,
,
的中点,
,
.
(I)设
是
的中点,证明:
平面
;
(II)证明:在
内存在一点
,使
平面
,并求点
到
,
的距离.
如图,已知菱形所在平面与直角梯形
所在平面互相垂直,
,
点
,
分别是线段
,
的中点.
(I)求证:平面平面
;
(Ⅱ)点在直线
上,且
//平面
,求平面
与平面
所成角的余弦值。
不透明的袋中有8张大小和形状完全相同的卡片,卡片上分别写有1,1,2,2,3,3,,
.现 从中任取3张卡片,假设每张卡片被取出的可能性相同.
(I)求取出的三张卡片中至少有一张字母卡片的概率;
(Ⅱ)设表示三张卡片上的数字之和.当三张卡片中含有字母时,则约定:有一个字母和二个相同数字时
为这二个数字之和,否则
,求
的分布列和期望
.
已知等差数列前三项的和为
,前三项的积为
.
(Ⅰ)求等差数列的通项公式;
(Ⅱ)若,
,
成等比数列,求数列
的前
项和.
已知函数(
)是偶函数
(1)求的值;
(2)设,若函数
与
的图像有且只有一个公共点,求实数
的取值范围
在中,角
的对边分别为
,若
.
(Ⅰ)求证:、
、
成等差数列;
(Ⅱ)若,求
的面积.