(本小题满分12分)某市电信宽带网用户收费标准如下表:(假定每月初均可以和电信部门约定上网方案)
方案 |
类别 |
基本费用 |
超时费用 |
甲 |
包月制 |
70元 |
|
乙 |
有限包月制(限60小时) |
50元 |
0.05元/分钟(无上限) |
丙 |
有限包月制(限30小时) |
30元 |
0.05元/分钟(无上限) |
(1)若某用户某月上网时间为T小时,当T在什么范围内时,选择甲方案最合算?并说明理由
(2)王先生因工作需要需在家上网,他一年内每月的上网时间T(小时)与月份n的函数关系为T = f (n) =.若公司能报销王先生全年的上网费用,问公司最少会为此花多少元?
已知角的终边经过点
,试写出角
的集合M,并把集合M中在
~
间的角写出来.
设数列的前n项和为
.已知
.
(I)求的通项公式;
(II)若数列满足
,
的前n项和
.
①求;
②若对于
恒成立,求
与
的范围.
已知函数.
(1)若当时
在
上恒成立,求
范围;
(2)解不等式.
如图,某市郊外景区内一条笔直的公路a经过三个景点A、B、C.景区管委会又开发了风景优美的景点D.经测量景点D位于景点A的北偏东30°方向上8 km处,位于景点B的正北方向,还位于景点C的北偏西75°方向上,已知AB=5 km.
(1)景区管委会准备由景点D向景点B修建一条笔直的公路,不考虑其他因素,求出这条公路的长;
(2)求景点C和景点D之间的距离.参考数据:sin75°=
要将两种大小不同的钢板截成A、B、C三种规格,每张钢板可同时截得三种规格的小钢板的块数如下表所示:
规格类型 钢板规格 |
A规格 |
B规格 |
C规格 |
第一种钢板 |
2 |
1 |
1 |
第二种钢板 |
1 |
2 |
3 |
今需A、B、C三种规格的成品分别为15、18、27块,问各截这两种钢板多少张可得所需A、B、C三种规格成品,且使所用的钢板的张数最少?